If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+80x+80=0
a = 8; b = 80; c = +80;
Δ = b2-4ac
Δ = 802-4·8·80
Δ = 3840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3840}=\sqrt{256*15}=\sqrt{256}*\sqrt{15}=16\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-16\sqrt{15}}{2*8}=\frac{-80-16\sqrt{15}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+16\sqrt{15}}{2*8}=\frac{-80+16\sqrt{15}}{16} $
| 3/4*x+2=11 | | 4x−=520 | | 2k2+5k+3=0 | | .5x(x+8)=192 | | 19b=(1/2b)(b-3) | | (z+1)^3=-1 | | X^2-4x+23=7x+5 | | 196=14n | | (1/2)x(x+8)=192 | | 2.3-5=3x.2 | | 1/2x(x+8)=192 | | 9p-8=8p | | x-4.80/1.50=6.20x | | -5+1+2x=x-4x | | 8.5x=70.2 | | 46.2/46.2=4.2x/4.2 | | X^2+13x+44=8 | | 24-x=19.5 | | 36=7w+2/2+w+5/4 | | y+42=4y | | 4(1+8x)=260 | | -20=4+4u | | 4c-9=5c+1 | | 9+y/44=5y/22 | | 8(2r-)-r=3(3r+2) | | X^+y^=113 | | 4(x-6)+6x=6x-8 | | 15x+31=-13 | | 9m=-3+10m | | 8+b•-4=5 | | x-12.5=50 | | -3-7v=88 |